You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

405 lines
12 KiB
HTML

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

<!DOCTYPE html>
<html lang="zh">
<head>
<meta charset="utf-8" />
<base href="../../../" />
<script src="page.js"></script>
<link type="text/css" rel="stylesheet" href="page.css" />
</head>
<body>
<h1>三维矩阵([name]</h1>
<p class="desc">
一个表示3X3矩阵[link:https://en.wikipedia.org/wiki/Matrix_(mathematics) matrix].的类。
</p>
<h2>代码示例</h2>
<code>
const m = new Matrix3();
</code>
<h2>注意行优先列优先的顺序。</h2>
<p>
[page:set]()方法参数采用行优先[link:https://en.wikipedia.org/wiki/Row-_and_column-major_order#Column-major_order row-major]
而它们在内部是用列优先[link:https://en.wikipedia.org/wiki/Row-_and_column-major_order column-major]顺序存储在数组当中。<br /><br />
这意味着
<code>
m.set( 11, 12, 13,
21, 22, 23,
31, 32, 33 );
</code>
元素数组[page:.elements elements]将存储为:
<code>
m.elements = [ 11, 21, 31,
12, 22, 32,
13, 23, 33 ];
</code>
在内部,所有的计算都是使用列优先顺序进行的。然而,由于实际的排序在数学上没有什么不同,
而且大多数人习惯于以行优先顺序考虑矩阵所以three.js文档以行为主的顺序显示矩阵。
请记住,如果您正在阅读源代码,您必须对这里列出的任何矩阵进行转置[link:https://en.wikipedia.org/wiki/Transpose transpose],以理解计算。
</p>
<h2>Constructor</h2>
<h3>[name]( [param:Number n11], [param:Number n12], [param:Number n13],
[param:Number n21], [param:Number n22], [param:Number n23],
[param:Number n31], [param:Number n32], [param:Number n33] )</h3>
<p>
Creates a 3x3 matrix with the given arguments in row-major order. If no arguments are provided, the constructor initializes
the [name] to the 3x3 [link:https://en.wikipedia.org/wiki/Identity_matrix identity matrix].
</p>
<h2>属性Properties</h2>
<h3>[property:Array elements]</h3>
<p>
矩阵列优先[link:https://en.wikipedia.org/wiki/Row-_and_column-major_order column-major]列表。
</p>
<h2>方法Methods</h2>
<h3>[method:Matrix3 clone]()</h3>
<p>创建一个新的矩阵,元素 [page:.elements elements] 与该矩阵相同。</p>
<h3>[method:this copy]( [param:Matrix3 m] )</h3>
<p>将矩阵[page:Matrix3 m]的元素复制到当前矩阵中。</p>
<h3>[method:Float determinant]()</h3>
<p>
计算并返回矩阵的行列式[link:https://en.wikipedia.org/wiki/Determinant determinant] 。
</p>
<h3>[method:Boolean equals]( [param:Matrix3 m] )</h3>
<p>如果矩阵[page:Matrix3 m] 与当前矩阵所有对应元素相同则返回true。</p>
<h3>[method:this extractBasis]( [param:Vector3 xAxis], [param:Vector3 yAxis], [param:Vector3 zAxis] )</h3>
<p>
将该矩阵的基向量 [link:https://en.wikipedia.org/wiki/Basis_(linear_algebra) basis] 提取到提供的三个轴向中。如果该矩阵如下:
</p>
<math display="block">
<mrow>
<mo>[</mo>
<mtable>
<mtr>
<mtd><mi>a</mi></mtd>
<mtd><mi>b</mi></mtd>
<mtd><mi>c</mi></mtd>
</mtr>
<mtr>
<mtd><mi>d</mi></mtd>
<mtd><mi>e</mi></mtd>
<mtd><mi>f</mi></mtd>
</mtr>
<mtr>
<mtd><mi>g</mi></mtd>
<mtd><mi>h</mi></mtd>
<mtd><mi>i</mi></mtd>
</mtr>
</mtable>
<mo>]</mo>
</mrow>
</math>
<p>
那么 [page:Vector3 xAxis], [page:Vector3 yAxis], [page:Vector3 zAxis] 将会被设置为:
</p>
<div style="text-align: center">
<math>
<mrow>
<mi>xAxis</mi>
<mo>=</mo>
<mo>[</mo>
<mtable>
<mtr><mtd style="height: 1rem"><mi>a</mi></mtd></mtr>
<mtr><mtd style="height: 1rem"><mi>d</mi></mtd></mtr>
<mtr><mtd style="height: 1rem"><mi>g</mi></mtd></mtr>
</mtable>
<mo>]</mo>
</mrow>
</math>,
<math>
<mrow>
<mi>yAxis</mi>
<mo>=</mo>
<mo>[</mo>
<mtable>
<mtr><mtd style="height: 1rem"><mi>b</mi></mtd></mtr>
<mtr><mtd style="height: 1rem"><mi>e</mi></mtd></mtr>
<mtr><mtd style="height: 1rem"><mi>h</mi></mtd></mtr>
</mtable>
<mo>]</mo>
</mrow>
</math>, and
<math>
<mrow>
<mi>zAxis</mi>
<mo>=</mo>
<mo>[</mo>
<mtable>
<mtr><mtd style="height: 1rem"><mi>c</mi></mtd></mtr>
<mtr><mtd style="height: 1rem"><mi>f</mi></mtd></mtr>
<mtr><mtd style="height: 1rem"><mi>i</mi></mtd></mtr>
</mtable>
<mo>]</mo>
</mrow>
</math>
</div>
<h3>[method:this fromArray]( [param:Array array], [param:Integer offset] )</h3>
<p>
[page:Array array] - 用来存储设置元素数据的数组<br />
[page:Integer offset] - (可选参数) 数组的偏移量,默认值为 0。<br /><br />
使用基于列优先格式[link:https://en.wikipedia.org/wiki/Row-_and_column-major_order#Column-major_order column-major]的数组来设置该矩阵。
</p>
<h3>[method:this invert]()</h3>
<p>
将当前矩阵翻转为它的逆矩阵,使用 [link:https://en.wikipedia.org/wiki/Invertible_matrix#Analytic_solution analytic method] 解析方式。你不能对行或列为 0 的矩阵进行翻转,如果你尝试这样做,该方法将生成一个零矩阵。
</p>
<h3>[method:this getNormalMatrix]( [param:Matrix4 m] )</h3>
<p>
[page:Matrix4 m] - [page:Matrix4]<br /><br />
将这个矩阵设置为给定矩阵的正规矩阵[link:https://en.wikipedia.org/wiki/Normal_matrix normal matrix]左上角的3x3
正规矩阵是矩阵[page:Matrix4 m]的逆矩阵[link:https://en.wikipedia.org/wiki/Invertible_matrix inverse] 的转置[link:https://en.wikipedia.org/wiki/Transpose transpose]。
</p>
<h3>[method:this identity]()</h3>
<p>
将此矩阵重置为3x3单位矩阵:
</p>
<math display="block">
<mrow>
<mo>[</mo>
<mtable>
<mtr>
<mtd><mn>1</mn></mtd>
<mtd><mn>0</mn></mtd>
<mtd><mn>0</mn></mtd>
</mtr>
<mtr>
<mtd><mn>0</mn></mtd>
<mtd><mn>1</mn></mtd>
<mtd><mn>0</mn></mtd>
</mtr>
<mtr>
<mtd><mn>0</mn></mtd>
<mtd><mn>0</mn></mtd>
<mtd><mn>1</mn></mtd>
</mtr>
</mtable>
<mo>]</mo>
</mrow>
</math>
<h3>[method:this makeRotation]( [param:Float theta] )</h3>
<p>
[page:Float theta] — Rotation angle in radians. Positive values rotate counterclockwise.<br /><br />
Sets this matrix as a 2D rotational transformation by [page:Float theta] radians.
The resulting matrix will be:
</p>
<math display="block">
<mrow>
<mo>[</mo>
<mtable>
<mtr>
<mtd>
<mi>cos</mi>
<mi>&theta;</mi>
</mtd>
<mtd>
<mi>-sin</mi>
<mi>&theta;</mi>
</mtd>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>sin</mi>
<mi>&theta;</mi>
</mtd>
<mtd>
<mi>cos</mi>
<mi>&theta;</mi>
</mtd>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd><mn>0</mn></mtd>
<mtd><mn>0</mn></mtd>
<mtd><mn>1</mn></mtd>
</mtr>
</mtable>
<mo>]</mo>
</mrow>
</math>
<h3>[method:this makeScale]( [param:Float x], [param:Float y] )</h3>
<p>
[page:Float x] - the amount to scale in the X axis.<br />
[page:Float y] - the amount to scale in the Y axis.<br />
Sets this matrix as a 2D scale transform:<br /><br />
<math>
<mrow>
<mo>[</mo>
<mtable>
<mtr>
<mtd><mi>x</mi></mtd>
<mtd><mn>0</mn></mtd>
<mtd><mn>0</mn></mtd>
</mtr>
<mtr>
<mtd><mn>0</mn></mtd>
<mtd><mi>y</mi></mtd>
<mtd><mn>0</mn></mtd>
</mtr>
<mtr>
<mtd><mn>0</mn></mtd>
<mtd><mn>0</mn></mtd>
<mtd><mn>1</mn></mtd>
</mtr>
</mtable>
<mo>]</mo>
</mrow>
</math>
</p>
<h3>[method:this makeTranslation]( [param:Vector2 v] )</h3>
<h3>[method:this makeTranslation]( [param:Float x], [param:Float y] )</h3>
<p>
[page:Vector2 v] a translation transform from vector.<br />
or<br />
[page:Float x] - the amount to translate in the X axis.<br />
[page:Float y] - the amount to translate in the Y axis.<br />
Sets this matrix as a 2D translation transform:
</p>
<math display="block">
<mrow>
<mo>[</mo>
<mtable>
<mtr>
<mtd><mn>1</mn></mtd>
<mtd><mn>0</mn></mtd>
<mtd><mi>x</mi></mtd>
</mtr>
<mtr>
<mtd><mn>0</mn></mtd>
<mtd><mn>1</mn></mtd>
<mtd><mi>y</mi></mtd>
</mtr>
<mtr>
<mtd><mn>0</mn></mtd>
<mtd><mn>0</mn></mtd>
<mtd><mn>1</mn></mtd>
</mtr>
</mtable>
<mo>]</mo>
</mrow>
</math>
<h3>[method:this multiply]( [param:Matrix3 m] )</h3>
<p>将当前矩阵乘以矩阵[page:Matrix3 m]。</p>
<h3>[method:this multiplyMatrices]( [param:Matrix3 a], [param:Matrix3 b] )</h3>
<p>设置当前矩阵为矩阵[page:Matrix3 a] x 矩阵[page:Matrix3 b]。</p>
<h3>[method:this multiplyScalar]( [param:Float s] )</h3>
<p>当前矩阵所有的元素乘以该缩放值*s*</p>
<h3>[method:this set]( [param:Float n11], [param:Float n12], [param:Float n13], [param:Float n21], [param:Float n22], [param:Float n23], [param:Float n31], [param:Float n32], [param:Float n33] )</h3>
<p>
使用行优先 [link:https://en.wikipedia.org/wiki/Row-_and_column-major_order row-major] 的格式来设置该矩阵:
</p>
<math display="block">
<mrow>
<mo>[</mo>
<mtable>
<mtr>
<mtd><mi>n11</mi></mtd>
<mtd><mi>n12</mi></mtd>
<mtd><mi>n13</mi></mtd>
</mtr>
<mtr>
<mtd><mi>n21</mi></mtd>
<mtd><mi>n22</mi></mtd>
<mtd><mi>n23</mi></mtd>
</mtr>
<mtr>
<mtd><mi>n31</mi></mtd>
<mtd><mi>n32</mi></mtd>
<mtd><mi>n33</mi></mtd>
</mtr>
</mtable>
<mo>]</mo>
</mrow>
</math>
<h3>[method:this premultiply]( [param:Matrix3 m] )</h3>
<p>将矩阵[page:Matrix3 m]乘以当前矩阵。</p>
<h3>[method:this setFromMatrix4]( [param:Matrix4 m] )</h3>
<p>根据参数 [page:Matrix4 m] 左上 3x3 的矩阵值,设置当前矩阵的值。</p>
<h3>[method:this setUvTransform]( [param:Float tx], [param:Float ty], [param:Float sx], [param:Float sy], [param:Float rotation], [param:Float cx], [param:Float cy] )</h3>
<p>
[page:Float tx] - x偏移量<br />
[page:Float ty] - y偏移量<br />
[page:Float sx] - x方向的重复比例<br />
[page:Float sy] - y方向的重复比例<br />
[page:Float rotation] - 旋转, 弧度。Positive values rotate counterclockwise<br />
[page:Float cx] - 旋转中心x<br />
[page:Float cy] - 旋转中心y<br /><br />
使用偏移重复旋转和中心点位置设置UV变换矩阵。
</p>
<h3>[method:Array toArray]( [param:Array array], [param:Integer offset] )</h3>
<p>
[page:Array array] - (可选参数) 存储矩阵元素的数组,如果未指定会创建一个新的数组。<br />
[page:Integer offset] - (可选参数) 存放矩阵元素数组的偏移量。<br /><br />
使用列优先[link:https://en.wikipedia.org/wiki/Row-_and_column-major_order#Column-major_order column-major]格式将此矩阵的元素写入数组中。
</p>
<h3>[method:this transpose]()</h3>
<p>将该矩阵转置[link:https://en.wikipedia.org/wiki/Transpose Transposes]。</p>
<h3>[method:this transposeIntoArray]( [param:Array array] )</h3>
<p>
[page:Array array] - 用于存储当前矩阵转置结果的数组。<br /><br />
将当前矩阵的转置[link:https://en.wikipedia.org/wiki/Transpose Transposes]存入给定的数组 array 中,但不改变当前矩阵,
并返回当前矩阵。
</p>
<h2>源码Source</h2>
<p>
[link:https://github.com/mrdoob/three.js/blob/master/src/[path].js src/[path].js]
</p>
</body>
</html>