You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
earthquake_3d_viewer_front/three/examples/webgpu_compute_water.html

595 lines
18 KiB
HTML

<!DOCTYPE html>
<html lang="en">
<head>
<title>three.js webgpu - compute water</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, user-scalable=no, minimum-scale=1.0, maximum-scale=1.0">
<link type="text/css" rel="stylesheet" href="main.css">
</head>
<body>
<div id="info">
<a href="https://threejs.org" target="_blank" rel="noopener">three.js</a> - <span id="waterSize"></span> webgpu compute water<br/>
Click and move mouse to disturb water.
</div>
<script type="importmap">
{
"imports": {
"three": "../build/three.webgpu.js",
"three/webgpu": "../build/three.webgpu.js",
"three/tsl": "../build/three.tsl.js",
"three/addons/": "./jsm/"
}
}
</script>
<script type="module">
import * as THREE from 'three';
import { instanceIndex, struct, If, uint, int, floor, float, length, clamp, vec2, cos, vec3, vertexIndex, Fn, uniform, instancedArray, min, max, positionLocal, transformNormalToView } from 'three/tsl';
import { SimplexNoise } from 'three/addons/math/SimplexNoise.js';
import { GLTFLoader } from 'three/addons/loaders/GLTFLoader.js';
import { RGBELoader } from 'three/addons/loaders/RGBELoader.js';
import { DRACOLoader } from 'three/addons/loaders/DRACOLoader.js';
import { OrbitControls } from 'three/addons/controls/OrbitControls.js';
import { GUI } from 'three/addons/libs/lil-gui.module.min.js';
import Stats from 'three/addons/libs/stats.module.js';
// Dimensions of simulation grid.
const WIDTH = 128;
// Water size in system units.
const BOUNDS = 6;
const BOUNDS_HALF = BOUNDS * 0.5;
const limit = BOUNDS_HALF - 0.2;
const waterMaxHeight = 0.1;
let container, stats;
let camera, scene, renderer, controls;
let mouseDown = false;
let firstClick = true;
let updateOriginMouseDown = false;
const mouseCoords = new THREE.Vector2();
const raycaster = new THREE.Raycaster();
let frame = 0;
const effectController = {
mousePos: uniform( new THREE.Vector2() ).label( 'mousePos' ),
mouseSpeed: uniform( new THREE.Vector2() ).label( 'mouseSpeed' ),
mouseDeep: uniform( .5 ).label( 'mouseDeep' ),
mouseSize: uniform( 0.12 ).label( 'mouseSize' ),
viscosity: uniform( 0.96 ).label( 'viscosity' ),
ducksEnabled: true,
wireframe: false,
speed: 5,
};
let sun;
let waterMesh;
let poolBorder;
let meshRay;
let computeHeight, computeDucks;
let duckModel = null;
const NUM_DUCKS = 100;
const simplex = new SimplexNoise();
init();
function noise( x, y ) {
let multR = waterMaxHeight;
let mult = 0.025;
let r = 0;
for ( let i = 0; i < 15; i ++ ) {
r += multR * simplex.noise( x * mult, y * mult );
multR *= 0.53 + 0.025 * i;
mult *= 1.25;
}
return r;
}
async function init() {
container = document.createElement( 'div' );
document.body.appendChild( container );
camera = new THREE.PerspectiveCamera( 75, window.innerWidth / window.innerHeight, 1, 3000 );
camera.position.set( 0, 2.00, 4 );
camera.lookAt( 0, 0, 0 );
scene = new THREE.Scene();
sun = new THREE.DirectionalLight( 0xFFFFFF, 4.0 );
sun.position.set( - 1, 2.6, 1.4 );
scene.add( sun );
//
// Initialize height storage buffers
const heightArray = new Float32Array( WIDTH * WIDTH );
const prevHeightArray = new Float32Array( WIDTH * WIDTH );
let p = 0;
for ( let j = 0; j < WIDTH; j ++ ) {
for ( let i = 0; i < WIDTH; i ++ ) {
const x = i * 128 / WIDTH;
const y = j * 128 / WIDTH;
const height = noise( x, y );
heightArray[ p ] = height;
prevHeightArray[ p ] = height;
p ++;
}
}
const heightStorage = instancedArray( heightArray ).label( 'Height' );
const prevHeightStorage = instancedArray( prevHeightArray ).label( 'PrevHeight' );
// Get Indices of Neighbor Values of an Index in the Simulation Grid
const getNeighborIndicesTSL = ( index ) => {
const width = uint( WIDTH );
// Get 2-D compute coordinate from one-dimensional instanceIndex. The calculation will
// still work even if you dispatch your compute shader 2-dimensionally, since within a compute
// context, instanceIndex is a 1-dimensional value derived from the workgroup dimensions.
// Cast to int to prevent unintended index overflow upon subtraction.
const x = int( index.mod( WIDTH ) );
const y = int( index.div( WIDTH ) );
// The original shader accesses height via texture uvs. However, unlike with textures, we can't
// access areas that are out of bounds. Accordingly, we emulate the Clamp to Edge Wrapping
// behavior of accessing a DataTexture with out of bounds uvs.
const leftX = max( 0, x.sub( 1 ) );
const rightX = min( x.add( 1 ), width.sub( 1 ) );
const bottomY = max( 0, y.sub( 1 ) );
const topY = min( y.add( 1 ), width.sub( 1 ) );
const westIndex = y.mul( width ).add( leftX );
const eastIndex = y.mul( width ).add( rightX );
const southIndex = bottomY.mul( width ).add( x );
const northIndex = topY.mul( width ).add( x );
return { northIndex, southIndex, eastIndex, westIndex };
};
// Get simulation index neighbor values
const getNeighborValuesTSL = ( index, store ) => {
const { northIndex, southIndex, eastIndex, westIndex } = getNeighborIndicesTSL( index );
const north = store.element( northIndex );
const south = store.element( southIndex );
const east = store.element( eastIndex );
const west = store.element( westIndex );
return { north, south, east, west };
};
// Get new normals of simulation area.
const getNormalsFromHeightTSL = ( index, store ) => {
const { north, south, east, west } = getNeighborValuesTSL( index, store );
const normalX = ( west.sub( east ) ).mul( WIDTH / BOUNDS );
const normalY = ( south.sub( north ) ).mul( WIDTH / BOUNDS );
return { normalX, normalY };
};
computeHeight = Fn( () => {
const { viscosity, mousePos, mouseSize, mouseDeep, mouseSpeed } = effectController;
const height = heightStorage.element( instanceIndex ).toVar();
const prevHeight = prevHeightStorage.element( instanceIndex ).toVar();
const { north, south, east, west } = getNeighborValuesTSL( instanceIndex, heightStorage );
const neighborHeight = north.add( south ).add( east ).add( west );
neighborHeight.mulAssign( 0.5 );
neighborHeight.subAssign( prevHeight );
const newHeight = neighborHeight.mul( viscosity );
// Get 2-D compute coordinate from one-dimensional instanceIndex.
const x = float( instanceIndex.mod( WIDTH ) ).mul( 1 / WIDTH );
const y = float( instanceIndex.div( WIDTH ) ).mul( 1 / WIDTH );
// Mouse influence
const centerVec = vec2( 0.5 );
// Get length of position in range [ -BOUNDS / 2, BOUNDS / 2 ], offset by mousePos, then scale.
const mousePhase = clamp( length( ( vec2( x, y ).sub( centerVec ) ).mul( BOUNDS ).sub( mousePos ) ).mul( Math.PI ).div( mouseSize ), 0.0, Math.PI );
// "Indent" water down by scaled distance from center of mouse impact
newHeight.addAssign( cos( mousePhase ).add( 1.0 ).mul( mouseDeep ).mul( mouseSpeed.length() ) );
prevHeightStorage.element( instanceIndex ).assign( height );
heightStorage.element( instanceIndex ).assign( newHeight );
} )().compute( WIDTH * WIDTH );
// Water Geometry corresponds with buffered compute grid.
const waterGeometry = new THREE.PlaneGeometry( BOUNDS, BOUNDS, WIDTH - 1, WIDTH - 1 );
const waterMaterial = new THREE.MeshStandardNodeMaterial( {
color: 0x9bd2ec,
metalness: 0.9,
roughness: 0,
transparent: true,
opacity: 0.8,
side: THREE.DoubleSide
} );
waterMaterial.normalNode = Fn( () => {
// To correct the lighting as our mesh undulates, we have to reassign the normals in the normal shader.
const { normalX, normalY } = getNormalsFromHeightTSL( vertexIndex, heightStorage );
return transformNormalToView( vec3( normalX, normalY.negate(), 1.0 ) ).toVertexStage();
} )();
waterMaterial.positionNode = Fn( () => {
return vec3( positionLocal.x, positionLocal.y, heightStorage.element( vertexIndex ) );
} )();
waterMesh = new THREE.Mesh( waterGeometry, waterMaterial );
waterMesh.rotation.x = - Math.PI * 0.5;
waterMesh.matrixAutoUpdate = false;
waterMesh.updateMatrix();
scene.add( waterMesh );
// Pool border
const borderGeom = new THREE.TorusGeometry( 4.2, 0.1, 12, 4 );
borderGeom.rotateX( Math.PI * 0.5 );
borderGeom.rotateY( Math.PI * 0.25 );
poolBorder = new THREE.Mesh( borderGeom, new THREE.MeshStandardMaterial( { color: 0x908877, roughness: 0.2 } ) );
scene.add( poolBorder );
// THREE.Mesh just for mouse raycasting
const geometryRay = new THREE.PlaneGeometry( BOUNDS, BOUNDS, 1, 1 );
meshRay = new THREE.Mesh( geometryRay, new THREE.MeshBasicMaterial( { color: 0xFFFFFF, visible: false } ) );
meshRay.rotation.x = - Math.PI / 2;
meshRay.matrixAutoUpdate = false;
meshRay.updateMatrix();
scene.add( meshRay );
// Initialize sphere mesh instance position and velocity.
// position<vec3> + velocity<vec2> + unused<vec3> = 8 floats per sphere.
// for structs arrays must be enclosed in multiple of 4
const duckStride = 8;
const duckInstanceDataArray = new Float32Array( NUM_DUCKS * duckStride );
// Only hold velocity in x and z directions.
// The sphere is wedded to the surface of the water, and will only move vertically with the water.
for ( let i = 0; i < NUM_DUCKS; i ++ ) {
duckInstanceDataArray[ i * duckStride + 0 ] = ( Math.random() - 0.5 ) * BOUNDS * 0.7;
duckInstanceDataArray[ i * duckStride + 1 ] = 0;
duckInstanceDataArray[ i * duckStride + 2 ] = ( Math.random() - 0.5 ) * BOUNDS * 0.7;
}
const DuckStruct = struct( {
position: 'vec3',
velocity: 'vec2'
} );
// Duck instance data storage
const duckInstanceDataStorage = instancedArray( duckInstanceDataArray, DuckStruct ).label( 'DuckInstanceData' );
computeDucks = Fn( () => {
const yOffset = float( - 0.04 );
const verticalResponseFactor = float( 0.98 );
const waterPushFactor = float( 0.015 );
const linearDamping = float( 0.92 );
const bounceDamping = float( - 0.4 );
// Get 2-D compute coordinate from one-dimensional instanceIndex. The calculation will
const instancePosition = duckInstanceDataStorage.element( instanceIndex ).get( 'position' ).toVar();
const velocity = duckInstanceDataStorage.element( instanceIndex ).get( 'velocity' ).toVar();
const gridCoordX = instancePosition.x.div( BOUNDS ).add( 0.5 ).mul( WIDTH );
const gridCoordZ = instancePosition.z.div( BOUNDS ).add( 0.5 ).mul( WIDTH );
// Cast to int to prevent unintended index overflow upon subtraction.
const xCoord = uint( clamp( floor( gridCoordX ), 0, WIDTH - 1 ) );
const zCoord = uint( clamp( floor( gridCoordZ ), 0, WIDTH - 1 ) );
const heightInstanceIndex = zCoord.mul( WIDTH ).add( xCoord );
// Get height of water at the duck's position
const waterHeight = heightStorage.element( heightInstanceIndex );
const { normalX, normalY } = getNormalsFromHeightTSL( heightInstanceIndex, heightStorage );
// Calculate the target Y position based on the water height and the duck's vertical offset
const targetY = waterHeight.add( yOffset );
const deltaY = targetY.sub( instancePosition.y );
instancePosition.y.addAssign( deltaY.mul( verticalResponseFactor ) ); // Atualiza Y gradualmente
// Get the normal of the water surface at the duck's position
const pushX = normalX.mul( waterPushFactor );
const pushZ = normalY.mul( waterPushFactor );
// Apply the water push to the duck's velocity
velocity.x.mulAssign( linearDamping );
velocity.y.mulAssign( linearDamping );
velocity.x.addAssign( pushX );
velocity.y.addAssign( pushZ );
// update position based on velocity
instancePosition.x.addAssign( velocity.x );
instancePosition.z.addAssign( velocity.y );
// Clamp position to the pool bounds
If( instancePosition.x.lessThan( - limit ), () => {
instancePosition.x = - limit;
velocity.x.mulAssign( bounceDamping );
} ).ElseIf( instancePosition.x.greaterThan( limit ), () => {
instancePosition.x = limit;
velocity.x.mulAssign( bounceDamping );
} );
If( instancePosition.z.lessThan( - limit ), () => {
instancePosition.z = - limit;
velocity.y.mulAssign( bounceDamping ); // Inverte e amortece vz (velocity.y)
} ).ElseIf( instancePosition.z.greaterThan( limit ), () => {
instancePosition.z = limit;
velocity.y.mulAssign( bounceDamping );
} );
// assignment of new values to the instance data storage
duckInstanceDataStorage.element( instanceIndex ).get( 'position' ).assign( instancePosition );
duckInstanceDataStorage.element( instanceIndex ).get( 'velocity' ).assign( velocity );
} )().compute( NUM_DUCKS );
// Models / Textures
const rgbeLoader = new RGBELoader().setPath( './textures/equirectangular/' );
const glbloader = new GLTFLoader().setPath( 'models/gltf/' );
glbloader.setDRACOLoader( new DRACOLoader().setDecoderPath( 'jsm/libs/draco/gltf/' ) );
const [ env, model ] = await Promise.all( [ rgbeLoader.loadAsync( 'blouberg_sunrise_2_1k.hdr' ), glbloader.loadAsync( 'duck.glb' ) ] );
env.mapping = THREE.EquirectangularReflectionMapping;
scene.environment = env;
scene.background = env;
scene.backgroundBlurriness = 0.3;
scene.environmentIntensity = 1.25;
duckModel = model.scene.children[ 0 ];
duckModel.material.positionNode = Fn( () => {
const instancePosition = duckInstanceDataStorage.element( instanceIndex ).get( 'position' );
const newPosition = positionLocal.add( instancePosition );
return newPosition;
} )();
const duckMesh = new THREE.InstancedMesh( duckModel.geometry, duckModel.material, NUM_DUCKS );
scene.add( duckMesh );
renderer = new THREE.WebGPURenderer( { antialias: true } );
renderer.setPixelRatio( window.devicePixelRatio );
renderer.setSize( window.innerWidth, window.innerHeight );
renderer.toneMapping = THREE.ACESFilmicToneMapping;
renderer.toneMappingExposure = 0.5;
renderer.setAnimationLoop( animate );
container.appendChild( renderer.domElement );
controls = new OrbitControls( camera, container );
container.style.touchAction = 'none';
// Stats
stats = new Stats();
container.appendChild( stats.dom );
container.style.touchAction = 'none';
container.addEventListener( 'pointermove', onPointerMove );
container.addEventListener( 'pointerdown', onPointerDown );
container.addEventListener( 'pointerup', onPointerUp );
window.addEventListener( 'resize', onWindowResize );
// GUI
const gui = new GUI();
gui.add( effectController.mouseSize, 'value', 0.1, .3 ).name( 'Mouse Size' );
gui.add( effectController.mouseDeep, 'value', 0.1, 1 ).name( 'Mouse Deep' );
gui.add( effectController.viscosity, 'value', 0.9, 0.96, 0.001 ).name( 'viscosity' );
gui.add( effectController, 'speed', 1, 6, 1 );
gui.add( effectController, 'ducksEnabled' ).onChange( () => {
duckMesh.visible = effectController.ducksEnabled;
} );
gui.add( effectController, 'wireframe' ).onChange( () => {
waterMesh.material.wireframe = ! waterMesh.material.wireframe;
poolBorder.material.wireframe = ! poolBorder.material.wireframe;
duckModel.material.wireframe = ! duckModel.material.wireframe;
waterMesh.material.needsUpdate = true;
poolBorder.material.needsUpdate = true;
} );
}
function onWindowResize() {
camera.aspect = window.innerWidth / window.innerHeight;
camera.updateProjectionMatrix();
renderer.setSize( window.innerWidth, window.innerHeight );
}
function setMouseCoords( x, y ) {
mouseCoords.set( ( x / renderer.domElement.clientWidth ) * 2 - 1, - ( y / renderer.domElement.clientHeight ) * 2 + 1 );
}
function onPointerDown() {
mouseDown = true;
firstClick = true;
updateOriginMouseDown = true;
}
function onPointerUp() {
mouseDown = false;
firstClick = false;
updateOriginMouseDown = false;
controls.enabled = true;
}
function onPointerMove( event ) {
if ( event.isPrimary === false ) return;
setMouseCoords( event.clientX, event.clientY );
}
function animate() {
render();
stats.update();
}
function raycast() {
if ( mouseDown && ( firstClick || ! controls.enabled ) ) {
raycaster.setFromCamera( mouseCoords, camera );
const intersects = raycaster.intersectObject( meshRay );
if ( intersects.length > 0 ) {
const point = intersects[ 0 ].point;
if ( updateOriginMouseDown ) {
effectController.mousePos.value.set( point.x, point.z );
updateOriginMouseDown = false;
}
effectController.mouseSpeed.value.set(
( point.x - effectController.mousePos.value.x ),
( point.z - effectController.mousePos.value.y )
);
effectController.mousePos.value.set( point.x, point.z );
if ( firstClick ) {
controls.enabled = false;
}
} else {
updateOriginMouseDown = true;
effectController.mouseSpeed.value.set( 0, 0 );
}
firstClick = false;
} else {
updateOriginMouseDown = true;
effectController.mouseSpeed.value.set( 0, 0 );
}
}
function render() {
raycast();
frame ++;
if ( frame >= 7 - effectController.speed ) {
renderer.computeAsync( computeHeight );
if ( effectController.ducksEnabled ) {
renderer.computeAsync( computeDucks );
}
frame = 0;
}
renderer.render( scene, camera );
}
</script>
</body>
</html>