You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
earthquake_3d_viewer_front/three/examples/webgpu_tsl_vfx_linkedpartic...

462 lines
17 KiB
HTML

<!DOCTYPE html>
<html lang="en">
<head>
<title>three.js webgpu - VFX Linked particles</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, user-scalable=no, minimum-scale=1.0, maximum-scale=1.0">
<link type="text/css" rel="stylesheet" href="main.css">
</head>
<body>
<div id="info">
<a href="https://threejs.org" target="_blank" rel="noopener">three.js webgpu</a> - VFX Linked particles
<br>
Based on <a href="https://github.com/ULuIQ12/webgpu-tsl-linkedparticles" target="_blank" rel="noopener">this experiment</a> by Christophe Choffel
</div>
<script type="importmap">
{
"imports": {
"three": "../build/three.webgpu.js",
"three/webgpu": "../build/three.webgpu.js",
"three/tsl": "../build/three.tsl.js",
"three/addons/": "./jsm/"
}
}
</script>
<script type="module">
import * as THREE from 'three';
import { atan, cos, float, max, min, mix, PI, PI2, sin, vec2, vec3, color, Fn, hash, hue, If, instanceIndex, Loop, mx_fractal_noise_float, mx_fractal_noise_vec3, pass, pcurve, storage, deltaTime, time, uv, uniform, step } from 'three/tsl';
import { bloom } from 'three/addons/tsl/display/BloomNode.js';
import { OrbitControls } from 'three/addons/controls/OrbitControls.js';
import { Timer } from 'three/addons/misc/Timer.js';
import { GUI } from 'three/addons/libs/lil-gui.module.min.js';
import WebGPU from 'three/addons/capabilities/WebGPU.js';
let camera, scene, renderer, postProcessing, controls, timer, light;
let updateParticles, spawnParticles; // TSL compute nodes
let getInstanceColor; // TSL function
const screenPointer = new THREE.Vector2();
const scenePointer = new THREE.Vector3();
const raycastPlane = new THREE.Plane( new THREE.Vector3( 0, 0, 1 ), 0 );
const raycaster = new THREE.Raycaster();
const nbParticles = Math.pow( 2, 13 );
const timeScale = uniform( 1.0 );
const particleLifetime = uniform( 0.5 );
const particleSize = uniform( 1.0 );
const linksWidth = uniform( 0.005 );
const colorOffset = uniform( 0.0 );
const colorVariance = uniform( 2.0 );
const colorRotationSpeed = uniform( 1.0 );
const spawnIndex = uniform( 0 );
const nbToSpawn = uniform( 5 );
const spawnPosition = uniform( vec3( 0.0 ) );
const previousSpawnPosition = uniform( vec3( 0.0 ) );
const turbFrequency = uniform( 0.5 );
const turbAmplitude = uniform( 0.5 );
const turbOctaves = uniform( 2 );
const turbLacunarity = uniform( 2.0 );
const turbGain = uniform( 0.5 );
const turbFriction = uniform( 0.01 );
init();
function init() {
if ( WebGPU.isAvailable() === false ) {
document.body.appendChild( WebGPU.getErrorMessage() );
throw new Error( 'No WebGPU support' );
}
camera = new THREE.PerspectiveCamera( 60, window.innerWidth / window.innerHeight, 0.1, 200 );
camera.position.set( 0, 0, 10 );
scene = new THREE.Scene();
timer = new Timer();
timer.connect( document );
// renderer
renderer = new THREE.WebGPURenderer( { antialias: true } );
renderer.setClearColor( 0x14171a );
renderer.setPixelRatio( window.devicePixelRatio );
renderer.setSize( window.innerWidth, window.innerHeight );
renderer.setAnimationLoop( animate );
renderer.toneMapping = THREE.ACESFilmicToneMapping;
document.body.appendChild( renderer.domElement );
// TSL function
// current color from index
getInstanceColor = /*#__PURE__*/ Fn( ( [ i ] ) => {
return hue( color( 0x0000ff ), colorOffset.add( mx_fractal_noise_float( i.toFloat().mul( .1 ), 2, 2.0, 0.5, colorVariance ) ) );
} );
// Particles
// storage buffers
const particlePositions = storage( new THREE.StorageInstancedBufferAttribute( nbParticles, 4 ), 'vec4', nbParticles );
const particleVelocities = storage( new THREE.StorageInstancedBufferAttribute( nbParticles, 4 ), 'vec4', nbParticles );
// init particles buffers
renderer.computeAsync( /*#__PURE__*/ Fn( () => {
particlePositions.element( instanceIndex ).xyz.assign( vec3( 10000.0 ) );
particlePositions.element( instanceIndex ).w.assign( vec3( - 1.0 ) ); // life is stored in w component; x<0 means dead
} )().compute( nbParticles ) );
// particles output
const particleQuadSize = 0.05;
const particleGeom = new THREE.PlaneGeometry( particleQuadSize, particleQuadSize );
const particleMaterial = new THREE.SpriteNodeMaterial();
particleMaterial.blending = THREE.AdditiveBlending;
particleMaterial.depthWrite = false;
particleMaterial.positionNode = particlePositions.toAttribute();
particleMaterial.scaleNode = vec2( particleSize );
particleMaterial.rotationNode = atan( particleVelocities.toAttribute().y, particleVelocities.toAttribute().x );
particleMaterial.colorNode = /*#__PURE__*/ Fn( () => {
const life = particlePositions.toAttribute().w;
const modLife = pcurve( life.oneMinus(), 8.0, 1.0 );
const pulse = pcurve(
sin( hash( instanceIndex ).mul( PI2 ).add( time.mul( 0.5 ).mul( PI2 ) ) ).mul( 0.5 ).add( 0.5 ),
0.25,
0.25
).mul( 10.0 ).add( 1.0 );
return getInstanceColor( instanceIndex ).mul( pulse.mul( modLife ) );
} )();
particleMaterial.opacityNode = /*#__PURE__*/ Fn( () => {
const circle = step( uv().xy.sub( 0.5 ).length(), 0.5 );
const life = particlePositions.toAttribute().w;
return circle.mul( life );
} )();
const particleMesh = new THREE.InstancedMesh( particleGeom, particleMaterial, nbParticles );
particleMesh.instanceMatrix.setUsage( THREE.DynamicDrawUsage );
particleMesh.frustumCulled = false;
scene.add( particleMesh );
// Links between particles
// first, we define the indices for the links, 2 quads per particle, the indexation is fixed
const linksIndices = [];
for ( let i = 0; i < nbParticles; i ++ ) {
const baseIndex = i * 8;
for ( let j = 0; j < 2; j ++ ) {
const offset = baseIndex + j * 4;
linksIndices.push( offset, offset + 1, offset + 2, offset, offset + 2, offset + 3 );
}
}
// storage buffers attributes for the links
const nbVertices = nbParticles * 8;
const linksVerticesSBA = new THREE.StorageBufferAttribute( nbVertices, 4 );
const linksColorsSBA = new THREE.StorageBufferAttribute( nbVertices, 4 );
// links output
const linksGeom = new THREE.BufferGeometry();
linksGeom.setAttribute( 'position', linksVerticesSBA );
linksGeom.setAttribute( 'color', linksColorsSBA );
linksGeom.setIndex( linksIndices );
const linksMaterial = new THREE.MeshBasicNodeMaterial();
linksMaterial.vertexColors = true;
linksMaterial.side = THREE.DoubleSide;
linksMaterial.transparent = true;
linksMaterial.depthWrite = false;
linksMaterial.depthTest = false;
linksMaterial.blending = THREE.AdditiveBlending;
linksMaterial.opacityNode = storage( linksColorsSBA, 'vec4', linksColorsSBA.count ).toAttribute().w;
const linksMesh = new THREE.Mesh( linksGeom, linksMaterial );
linksMesh.frustumCulled = false;
scene.add( linksMesh );
// compute nodes
updateParticles = /*#__PURE__*/ Fn( () => {
const position = particlePositions.element( instanceIndex ).xyz;
const life = particlePositions.element( instanceIndex ).w;
const velocity = particleVelocities.element( instanceIndex ).xyz;
const dt = deltaTime.mul( 0.1 ).mul( timeScale );
If( life.greaterThan( 0.0 ), () => {
// first we update the particles positions and velocities
// velocity comes from a turbulence field, and is multiplied by the particle lifetime so that it slows down over time
const localVel = mx_fractal_noise_vec3( position.mul( turbFrequency ), turbOctaves, turbLacunarity, turbGain, turbAmplitude ).mul( life.add( .01 ) );
velocity.addAssign( localVel );
velocity.mulAssign( turbFriction.oneMinus() );
position.addAssign( velocity.mul( dt ) );
// then we decrease the lifetime
life.subAssign( dt.mul( particleLifetime.reciprocal() ) );
// then we find the two closest particles and set a quad to each of them
const closestDist1 = float( 10000.0 ).toVar();
const closestPos1 = vec3( 0.0 ).toVar();
const closestLife1 = float( 0.0 ).toVar();
const closestDist2 = float( 10000.0 ).toVar();
const closestPos2 = vec3( 0.0 ).toVar();
const closestLife2 = float( 0.0 ).toVar();
Loop( nbParticles, ( { i } ) => {
const otherPart = particlePositions.element( i );
If( i.notEqual( instanceIndex ).and( otherPart.w.greaterThan( 0.0 ) ), () => { // if not self and other particle is alive
const otherPosition = otherPart.xyz;
const dist = position.sub( otherPosition ).lengthSq();
const moreThanZero = dist.greaterThan( 0.0 );
If( dist.lessThan( closestDist1 ).and( moreThanZero ), () => {
closestDist1.assign( dist );
closestPos1.assign( otherPosition.xyz );
closestLife1.assign( otherPart.w );
} ).ElseIf( dist.lessThan( closestDist2 ).and( moreThanZero ), () => {
closestDist2.assign( dist );
closestPos2.assign( otherPosition.xyz );
closestLife2.assign( otherPart.w );
} );
} );
} );
// then we update the links correspondingly
const linksPositions = storage( linksVerticesSBA, 'vec4', linksVerticesSBA.count );
const linksColors = storage( linksColorsSBA, 'vec4', linksColorsSBA.count );
const firstLinkIndex = instanceIndex.mul( 8 );
const secondLinkIndex = firstLinkIndex.add( 4 );
// positions link 1
linksPositions.element( firstLinkIndex ).xyz.assign( position );
linksPositions.element( firstLinkIndex ).y.addAssign( linksWidth );
linksPositions.element( firstLinkIndex.add( 1 ) ).xyz.assign( position );
linksPositions.element( firstLinkIndex.add( 1 ) ).y.addAssign( linksWidth.negate() );
linksPositions.element( firstLinkIndex.add( 2 ) ).xyz.assign( closestPos1 );
linksPositions.element( firstLinkIndex.add( 2 ) ).y.addAssign( linksWidth.negate() );
linksPositions.element( firstLinkIndex.add( 3 ) ).xyz.assign( closestPos1 );
linksPositions.element( firstLinkIndex.add( 3 ) ).y.addAssign( linksWidth );
// positions link 2
linksPositions.element( secondLinkIndex ).xyz.assign( position );
linksPositions.element( secondLinkIndex ).y.addAssign( linksWidth );
linksPositions.element( secondLinkIndex.add( 1 ) ).xyz.assign( position );
linksPositions.element( secondLinkIndex.add( 1 ) ).y.addAssign( linksWidth.negate() );
linksPositions.element( secondLinkIndex.add( 2 ) ).xyz.assign( closestPos2 );
linksPositions.element( secondLinkIndex.add( 2 ) ).y.addAssign( linksWidth.negate() );
linksPositions.element( secondLinkIndex.add( 3 ) ).xyz.assign( closestPos2 );
linksPositions.element( secondLinkIndex.add( 3 ) ).y.addAssign( linksWidth );
// colors are the same for all vertices of both quads
const linkColor = getInstanceColor( instanceIndex );
// store the minimum lifetime of the closest particles in the w component of colors
const l1 = max( 0.0, min( closestLife1, life ) ).pow( 0.8 ); // pow is here to apply a slight curve to the opacity
const l2 = max( 0.0, min( closestLife2, life ) ).pow( 0.8 );
Loop( 4, ( { i } ) => {
linksColors.element( firstLinkIndex.add( i ) ).xyz.assign( linkColor );
linksColors.element( firstLinkIndex.add( i ) ).w.assign( l1 );
linksColors.element( secondLinkIndex.add( i ) ).xyz.assign( linkColor );
linksColors.element( secondLinkIndex.add( i ) ).w.assign( l2 );
} );
} );
} )().compute( nbParticles );
spawnParticles = /*#__PURE__*/ Fn( () => {
const particleIndex = spawnIndex.add( instanceIndex ).mod( nbParticles ).toInt();
const position = particlePositions.element( particleIndex ).xyz;
const life = particlePositions.element( particleIndex ).w;
const velocity = particleVelocities.element( particleIndex ).xyz;
life.assign( 1.0 ); // sets it alive
// random spherical direction
const rRange = float( 0.01 );
const rTheta = hash( particleIndex ).mul( PI2 );
const rPhi = hash( particleIndex.add( 1 ) ).mul( PI );
const rx = sin( rTheta ).mul( cos( rPhi ) );
const ry = sin( rTheta ).mul( sin( rPhi ) );
const rz = cos( rTheta );
const rDir = vec3( rx, ry, rz );
// position is interpolated between the previous cursor position and the current one over the number of particles spawned
const pos = mix( previousSpawnPosition, spawnPosition, instanceIndex.toFloat().div( nbToSpawn.sub( 1 ).toFloat() ).clamp() );
position.assign( pos.add( rDir.mul( rRange ) ) );
// start in that direction
velocity.assign( rDir.mul( 5.0 ) );
} )().compute( nbToSpawn.value );
// background , an inverted icosahedron
const backgroundGeom = new THREE.IcosahedronGeometry( 100, 5 ).applyMatrix4( new THREE.Matrix4().makeScale( - 1, 1, 1 ) );
const backgroundMaterial = new THREE.MeshStandardNodeMaterial();
backgroundMaterial.roughness = 0.4;
backgroundMaterial.metalness = 0.9;
backgroundMaterial.flatShading = true;
backgroundMaterial.colorNode = color( 0x0 );
const backgroundMesh = new THREE.Mesh( backgroundGeom, backgroundMaterial );
scene.add( backgroundMesh );
// light for the background
light = new THREE.PointLight( 0xffffff, 3000 );
scene.add( light );
// post processing
postProcessing = new THREE.PostProcessing( renderer );
const scenePass = pass( scene, camera );
const scenePassColor = scenePass.getTextureNode( 'output' );
const bloomPass = bloom( scenePassColor, 0.75, 0.1, 0.5 );
postProcessing.outputNode = scenePassColor.add( bloomPass );
// controls
controls = new OrbitControls( camera, renderer.domElement );
controls.enableDamping = true;
controls.autoRotate = true;
controls.maxDistance = 75;
window.addEventListener( 'resize', onWindowResize );
// pointer handling
window.addEventListener( 'pointermove', onPointerMove );
// GUI
const gui = new GUI();
gui.add( controls, 'autoRotate' ).name( 'Auto Rotate' );
gui.add( controls, 'autoRotateSpeed', - 10.0, 10.0, 0.01 ).name( 'Auto Rotate Speed' );
const partFolder = gui.addFolder( 'Particles' );
partFolder.add( timeScale, 'value', 0.0, 4.0, 0.01 ).name( 'timeScale' );
partFolder.add( nbToSpawn, 'value', 1, 100, 1 ).name( 'Spawn rate' );
partFolder.add( particleSize, 'value', 0.01, 3.0, 0.01 ).name( 'Size' );
partFolder.add( particleLifetime, 'value', 0.01, 2.0, 0.01 ).name( 'Lifetime' );
partFolder.add( linksWidth, 'value', 0.001, 0.1, 0.001 ).name( 'Links width' );
partFolder.add( colorVariance, 'value', 0.0, 10.0, 0.01 ).name( 'Color variance' );
partFolder.add( colorRotationSpeed, 'value', 0.0, 5.0, 0.01 ).name( 'Color rotation speed' );
const turbFolder = gui.addFolder( 'Turbulence' );
turbFolder.add( turbFriction, 'value', 0.0, 0.3, 0.01 ).name( 'Friction' );
turbFolder.add( turbFrequency, 'value', 0.0, 1.0, 0.01 ).name( 'Frequency' );
turbFolder.add( turbAmplitude, 'value', 0.0, 10.0, 0.01 ).name( 'Amplitude' );
turbFolder.add( turbOctaves, 'value', 1, 9, 1 ).name( 'Octaves' );
turbFolder.add( turbLacunarity, 'value', 1.0, 5.0, 0.01 ).name( 'Lacunarity' );
turbFolder.add( turbGain, 'value', 0.0, 1.0, 0.01 ).name( 'Gain' );
const bloomFolder = gui.addFolder( 'bloom' );
bloomFolder.add( bloomPass.threshold, 'value', 0, 2.0, 0.01 ).name( 'Threshold' );
bloomFolder.add( bloomPass.strength, 'value', 0, 10, 0.01 ).name( 'Strength' );
bloomFolder.add( bloomPass.radius, 'value', 0, 1, 0.01 ).name( 'Radius' );
}
function onWindowResize() {
camera.aspect = window.innerWidth / window.innerHeight;
camera.updateProjectionMatrix();
renderer.setSize( window.innerWidth, window.innerHeight );
}
function onPointerMove( e ) {
screenPointer.x = ( e.clientX / window.innerWidth ) * 2 - 1;
screenPointer.y = - ( e.clientY / window.innerHeight ) * 2 + 1;
}
function updatePointer() {
raycaster.setFromCamera( screenPointer, camera );
raycaster.ray.intersectPlane( raycastPlane, scenePointer );
}
function animate() {
timer.update();
// compute particles
renderer.compute( updateParticles );
renderer.compute( spawnParticles );
// update particle index for next spawn
spawnIndex.value = ( spawnIndex.value + nbToSpawn.value ) % nbParticles;
// update raycast plane to face camera
raycastPlane.normal.applyEuler( camera.rotation );
updatePointer();
// lerping spawn position
previousSpawnPosition.value.copy( spawnPosition.value );
spawnPosition.value.lerp( scenePointer, 0.1 );
// rotating colors
colorOffset.value += timer.getDelta() * colorRotationSpeed.value * timeScale.value;
const elapsedTime = timer.getElapsed();
light.position.set(
Math.sin( elapsedTime * 0.5 ) * 30,
Math.cos( elapsedTime * 0.3 ) * 30,
Math.sin( elapsedTime * 0.2 ) * 30,
);
controls.update();
postProcessing.render();
}
</script>
</body>
</html>