You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
564 lines
19 KiB
HTML
564 lines
19 KiB
HTML
2 months ago
|
<!DOCTYPE html>
|
||
|
<html lang="en">
|
||
|
<head>
|
||
|
<title>three.js webgpu - compute cloth</title>
|
||
|
<meta charset="utf-8">
|
||
|
<meta name="viewport" content="width=device-width, user-scalable=no, minimum-scale=1.0, maximum-scale=1.0">
|
||
|
<link type="text/css" rel="stylesheet" href="main.css">
|
||
|
</head>
|
||
|
<body>
|
||
|
<div id="info">
|
||
|
<a href="https://threejs.org" target="_blank" rel="noopener">three.js</a> webgpu - compute cloth<br />
|
||
|
Simple cloth simulation with a verlet system running in compute shaders
|
||
|
</div>
|
||
|
|
||
|
<script type="importmap">
|
||
|
{
|
||
|
"imports": {
|
||
|
"three": "../build/three.webgpu.js",
|
||
|
"three/webgpu": "../build/three.webgpu.js",
|
||
|
"three/tsl": "../build/three.tsl.js",
|
||
|
"three/addons/": "./jsm/"
|
||
|
}
|
||
|
}
|
||
|
</script>
|
||
|
|
||
|
<script type="module">
|
||
|
|
||
|
import * as THREE from 'three';
|
||
|
|
||
|
import { Fn, If, Return, instancedArray, instanceIndex, uniform, select, attribute, uint, Loop, float, transformNormalToView, cross, triNoise3D, time } from 'three/tsl';
|
||
|
|
||
|
import { GUI } from 'three/addons/libs/lil-gui.module.min.js';
|
||
|
import { OrbitControls } from 'three/addons/controls/OrbitControls.js';
|
||
|
import { RGBELoader } from 'three/addons/loaders/RGBELoader.js';
|
||
|
|
||
|
let renderer, scene, camera, controls;
|
||
|
|
||
|
const clothWidth = 1;
|
||
|
const clothHeight = 1;
|
||
|
const clothNumSegmentsX = 30;
|
||
|
const clothNumSegmentsY = 30;
|
||
|
const sphereRadius = 0.15;
|
||
|
|
||
|
let vertexPositionBuffer, vertexForceBuffer, vertexParamsBuffer;
|
||
|
let springVertexIdBuffer, springRestLengthBuffer, springForceBuffer;
|
||
|
let springListBuffer;
|
||
|
let computeSpringForces, computeVertexForces;
|
||
|
let dampeningUniform, spherePositionUniform, stiffnessUniform, sphereUniform, windUniform;
|
||
|
let vertexWireframeObject, springWireframeObject;
|
||
|
let clothMesh, clothMaterial, sphere;
|
||
|
let timeSinceLastStep = 0;
|
||
|
let timestamp = 0;
|
||
|
const verletVertices = [];
|
||
|
const verletSprings = [];
|
||
|
const verletVertexColumns = [];
|
||
|
|
||
|
const clock = new THREE.Clock();
|
||
|
|
||
|
const params = {
|
||
|
wireframe: false,
|
||
|
sphere: true,
|
||
|
wind: 1.0,
|
||
|
};
|
||
|
|
||
|
const API = {
|
||
|
color: 0x204080, // sRGB
|
||
|
sheenColor: 0xffffff // sRGB
|
||
|
};
|
||
|
|
||
|
init();
|
||
|
|
||
|
async function init() {
|
||
|
|
||
|
renderer = new THREE.WebGPURenderer( { antialias: true } );
|
||
|
renderer.setPixelRatio( window.devicePixelRatio );
|
||
|
renderer.setSize( window.innerWidth, window.innerHeight );
|
||
|
renderer.toneMapping = THREE.NeutralToneMapping;
|
||
|
renderer.toneMappingExposure = 1;
|
||
|
document.body.appendChild( renderer.domElement );
|
||
|
|
||
|
scene = new THREE.Scene();
|
||
|
|
||
|
camera = new THREE.PerspectiveCamera( 40, window.innerWidth / window.innerHeight, 0.01, 10 );
|
||
|
camera.position.set( - 1.6, - 0.1, - 1.6 );
|
||
|
|
||
|
controls = new OrbitControls( camera, renderer.domElement );
|
||
|
controls.minDistance = 1;
|
||
|
controls.maxDistance = 3;
|
||
|
controls.target.set( 0, - 0.1, 0 );
|
||
|
controls.update();
|
||
|
|
||
|
const rgbeLoader = new RGBELoader().setPath( 'textures/equirectangular/' );
|
||
|
|
||
|
const hdrTexture = await rgbeLoader.loadAsync( 'royal_esplanade_1k.hdr' );
|
||
|
hdrTexture.mapping = THREE.EquirectangularReflectionMapping;
|
||
|
scene.background = hdrTexture;
|
||
|
scene.backgroundBlurriness = 0.5;
|
||
|
scene.environment = hdrTexture;
|
||
|
|
||
|
setupCloth();
|
||
|
|
||
|
const gui = new GUI();
|
||
|
gui.add( stiffnessUniform, 'value', 0.1, 0.5, 0.01 ).name( 'stiffness' );
|
||
|
gui.add( params, 'wireframe' );
|
||
|
gui.add( params, 'sphere' );
|
||
|
gui.add( params, 'wind', 0, 5, 0.1 );
|
||
|
|
||
|
const materialFolder = gui.addFolder( 'material' );
|
||
|
materialFolder.addColor( API, 'color' ).onChange( function ( color ) { clothMaterial.color.setHex( color ); } );
|
||
|
materialFolder.add( clothMaterial, 'roughness', 0.0, 1, 0.01 );
|
||
|
materialFolder.add( clothMaterial, 'sheen', 0.0, 1, 0.01 );
|
||
|
materialFolder.add( clothMaterial, 'sheenRoughness', 0.0, 1, 0.01 );
|
||
|
materialFolder.addColor( API, 'sheenColor' ).onChange( function ( color ) { clothMaterial.sheenColor.setHex( color ); } );
|
||
|
|
||
|
window.addEventListener( 'resize', onWindowResize );
|
||
|
|
||
|
renderer.setAnimationLoop( render );
|
||
|
|
||
|
}
|
||
|
|
||
|
function setupVerletGeometry() {
|
||
|
|
||
|
// this function sets up the geometry of the verlet system, a grid of vertices connected by springs
|
||
|
|
||
|
const addVerletVertex = ( x, y, z, isFixed ) => {
|
||
|
|
||
|
const id = verletVertices.length;
|
||
|
const vertex = {
|
||
|
id,
|
||
|
position: new THREE.Vector3( x, y, z ),
|
||
|
isFixed,
|
||
|
springIds: [],
|
||
|
};
|
||
|
verletVertices.push( vertex );
|
||
|
return vertex;
|
||
|
|
||
|
};
|
||
|
|
||
|
const addVerletSpring = ( vertex0, vertex1 ) => {
|
||
|
|
||
|
const id = verletSprings.length;
|
||
|
const spring = {
|
||
|
id,
|
||
|
vertex0,
|
||
|
vertex1
|
||
|
};
|
||
|
vertex0.springIds.push( id );
|
||
|
vertex1.springIds.push( id );
|
||
|
verletSprings.push( spring );
|
||
|
return spring;
|
||
|
|
||
|
};
|
||
|
|
||
|
// create the cloth's verlet vertices
|
||
|
for ( let x = 0; x <= clothNumSegmentsX; x ++ ) {
|
||
|
|
||
|
const column = [];
|
||
|
for ( let y = 0; y <= clothNumSegmentsY; y ++ ) {
|
||
|
|
||
|
const posX = x * ( clothWidth / clothNumSegmentsX ) - clothWidth * 0.5;
|
||
|
const posZ = y * ( clothHeight / clothNumSegmentsY );
|
||
|
const isFixed = ( y === 0 ) && ( ( x % 5 ) === 0 ); // make some of the top vertices' positions fixed
|
||
|
const vertex = addVerletVertex( posX, clothHeight * 0.5, posZ, isFixed );
|
||
|
column.push( vertex );
|
||
|
|
||
|
}
|
||
|
|
||
|
verletVertexColumns.push( column );
|
||
|
|
||
|
}
|
||
|
|
||
|
// create the cloth's verlet springs
|
||
|
for ( let x = 0; x <= clothNumSegmentsX; x ++ ) {
|
||
|
|
||
|
for ( let y = 0; y <= clothNumSegmentsY; y ++ ) {
|
||
|
|
||
|
const vertex0 = verletVertexColumns[ x ][ y ];
|
||
|
if ( x > 0 ) addVerletSpring( vertex0, verletVertexColumns[ x - 1 ][ y ] );
|
||
|
if ( y > 0 ) addVerletSpring( vertex0, verletVertexColumns[ x ][ y - 1 ] );
|
||
|
if ( x > 0 && y > 0 ) addVerletSpring( vertex0, verletVertexColumns[ x - 1 ][ y - 1 ] );
|
||
|
if ( x > 0 && y < clothNumSegmentsY ) addVerletSpring( vertex0, verletVertexColumns[ x - 1 ][ y + 1 ] );
|
||
|
|
||
|
// You can make the cloth more rigid by adding more springs between further apart vertices
|
||
|
//if (x > 1) addVerletSpring(vertex0, verletVertexColumns[x - 2][y]);
|
||
|
//if (y > 1) addVerletSpring(vertex0, verletVertexColumns[x][y - 2]);
|
||
|
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
function setupVerletVertexBuffers() {
|
||
|
|
||
|
// setup the buffers holding the vertex data for the compute shaders
|
||
|
|
||
|
const vertexCount = verletVertices.length;
|
||
|
|
||
|
const springListArray = [];
|
||
|
// this springListArray will hold a list of spring ids, ordered by the id of the vertex affected by that spring.
|
||
|
// this is so the compute shader that accumulates the spring forces for each vertex can efficiently iterate over all springs affecting that vertex
|
||
|
|
||
|
const vertexPositionArray = new Float32Array( vertexCount * 3 );
|
||
|
const vertexParamsArray = new Uint32Array( vertexCount * 3 );
|
||
|
// the params Array holds three values for each verlet vertex:
|
||
|
// x: isFixed, y: springCount, z: springPointer
|
||
|
// isFixed is 1 if the verlet is marked as immovable, 0 if not
|
||
|
// springCount is the number of springs connected to that vertex
|
||
|
// springPointer is the index of the first spring in the springListArray that is connected to that vertex
|
||
|
|
||
|
for ( let i = 0; i < vertexCount; i ++ ) {
|
||
|
|
||
|
const vertex = verletVertices[ i ];
|
||
|
vertexPositionArray[ i * 3 ] = vertex.position.x;
|
||
|
vertexPositionArray[ i * 3 + 1 ] = vertex.position.y;
|
||
|
vertexPositionArray[ i * 3 + 2 ] = vertex.position.z;
|
||
|
vertexParamsArray[ i * 3 ] = vertex.isFixed ? 1 : 0;
|
||
|
if ( ! vertex.isFixed ) {
|
||
|
|
||
|
vertexParamsArray[ i * 3 + 1 ] = vertex.springIds.length;
|
||
|
vertexParamsArray[ i * 3 + 2 ] = springListArray.length;
|
||
|
springListArray.push( ...vertex.springIds );
|
||
|
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
vertexPositionBuffer = instancedArray( vertexPositionArray, 'vec3' ).setPBO( true ); // setPBO(true) is only important for the WebGL Fallback
|
||
|
vertexForceBuffer = instancedArray( vertexCount, 'vec3' );
|
||
|
vertexParamsBuffer = instancedArray( vertexParamsArray, 'uvec3' );
|
||
|
|
||
|
springListBuffer = instancedArray( new Uint32Array( springListArray ), 'uint' ).setPBO( true );
|
||
|
|
||
|
}
|
||
|
|
||
|
function setupVerletSpringBuffers() {
|
||
|
|
||
|
// setup the buffers holding the spring data for the compute shaders
|
||
|
|
||
|
const springCount = verletSprings.length;
|
||
|
|
||
|
const springVertexIdArray = new Uint32Array( springCount * 2 );
|
||
|
const springRestLengthArray = new Float32Array( springCount );
|
||
|
|
||
|
for ( let i = 0; i < springCount; i ++ ) {
|
||
|
|
||
|
const spring = verletSprings[ i ];
|
||
|
springVertexIdArray[ i * 2 ] = spring.vertex0.id;
|
||
|
springVertexIdArray[ i * 2 + 1 ] = spring.vertex1.id;
|
||
|
springRestLengthArray[ i ] = spring.vertex0.position.distanceTo( spring.vertex1.position );
|
||
|
|
||
|
}
|
||
|
|
||
|
springVertexIdBuffer = instancedArray( springVertexIdArray, 'uvec2' ).setPBO( true );
|
||
|
springRestLengthBuffer = instancedArray( springRestLengthArray, 'float' );
|
||
|
springForceBuffer = instancedArray( springCount * 3, 'vec3' ).setPBO( true );
|
||
|
|
||
|
}
|
||
|
|
||
|
function setupUniforms() {
|
||
|
|
||
|
dampeningUniform = uniform( 0.99 );
|
||
|
spherePositionUniform = uniform( new THREE.Vector3( 0, 0, 0 ) );
|
||
|
sphereUniform = uniform( 1.0 );
|
||
|
windUniform = uniform( 1.0 );
|
||
|
stiffnessUniform = uniform( 0.2 );
|
||
|
|
||
|
}
|
||
|
|
||
|
function setupComputeShaders() {
|
||
|
|
||
|
// This function sets up the compute shaders for the verlet simulation
|
||
|
// There are two shaders that are executed for each simulation step
|
||
|
|
||
|
const vertexCount = verletVertices.length;
|
||
|
const springCount = verletSprings.length;
|
||
|
|
||
|
// 1. computeSpringForces:
|
||
|
// This shader computes a force for each spring, depending on the distance between the two vertices connected by that spring and the targeted rest length
|
||
|
computeSpringForces = Fn( () => {
|
||
|
|
||
|
If( instanceIndex.greaterThanEqual( uint( springCount ) ), () => {
|
||
|
|
||
|
// compute Shaders are executed in groups of 64, so instanceIndex might be bigger than the amount of springs.
|
||
|
// in that case, return.
|
||
|
Return();
|
||
|
|
||
|
} );
|
||
|
|
||
|
const vertexIds = springVertexIdBuffer.element( instanceIndex );
|
||
|
const restLength = springRestLengthBuffer.element( instanceIndex );
|
||
|
|
||
|
const vertex0Position = vertexPositionBuffer.element( vertexIds.x );
|
||
|
const vertex1Position = vertexPositionBuffer.element( vertexIds.y );
|
||
|
|
||
|
const delta = vertex1Position.sub( vertex0Position ).toVar();
|
||
|
const dist = delta.length().max( 0.000001 ).toVar();
|
||
|
const force = dist.sub( restLength ).mul( stiffnessUniform ).mul( delta ).mul( 0.5 ).div( dist );
|
||
|
springForceBuffer.element( instanceIndex ).assign( force );
|
||
|
|
||
|
} )().compute( springCount );
|
||
|
|
||
|
// 2. computeVertexForces:
|
||
|
// This shader accumulates the force for each vertex.
|
||
|
// First it iterates over all springs connected to this vertex and accumulates their forces.
|
||
|
// Then it adds a gravital force, wind force, and the collision with the sphere.
|
||
|
// In the end it adds the force to the vertex' position.
|
||
|
computeVertexForces = Fn( () => {
|
||
|
|
||
|
If( instanceIndex.greaterThanEqual( uint( vertexCount ) ), () => {
|
||
|
|
||
|
// compute Shaders are executed in groups of 64, so instanceIndex might be bigger than the amount of vertices.
|
||
|
// in that case, return.
|
||
|
Return();
|
||
|
|
||
|
} );
|
||
|
|
||
|
const params = vertexParamsBuffer.element( instanceIndex ).toVar();
|
||
|
const isFixed = params.x;
|
||
|
const springCount = params.y;
|
||
|
const springPointer = params.z;
|
||
|
|
||
|
If( isFixed, () => {
|
||
|
|
||
|
// don't need to calculate vertex forces if the vertex is set as immovable
|
||
|
Return();
|
||
|
|
||
|
} );
|
||
|
|
||
|
const position = vertexPositionBuffer.element( instanceIndex ).toVar( 'vertexPosition' );
|
||
|
const force = vertexForceBuffer.element( instanceIndex ).toVar( 'vertexForce' );
|
||
|
|
||
|
force.mulAssign( dampeningUniform );
|
||
|
|
||
|
const ptrStart = springPointer.toVar( 'ptrStart' );
|
||
|
const ptrEnd = ptrStart.add( springCount ).toVar( 'ptrEnd' );
|
||
|
|
||
|
Loop( { start: ptrStart, end: ptrEnd, type: 'uint', condition: '<' }, ( { i } ) => {
|
||
|
|
||
|
const springId = springListBuffer.element( i ).toVar( 'springId' );
|
||
|
const springForce = springForceBuffer.element( springId );
|
||
|
const springVertexIds = springVertexIdBuffer.element( springId );
|
||
|
const factor = select( springVertexIds.x.equal( instanceIndex ), 1.0, - 1.0 );
|
||
|
force.addAssign( springForce.mul( factor ) );
|
||
|
|
||
|
} );
|
||
|
|
||
|
// gravity
|
||
|
force.y.subAssign( 0.00005 );
|
||
|
|
||
|
// wind
|
||
|
const noise = triNoise3D( position, 1, time ).sub( 0.2 ).mul( 0.0001 );
|
||
|
const windForce = noise.mul( windUniform );
|
||
|
force.z.subAssign( windForce );
|
||
|
|
||
|
// collision with sphere
|
||
|
const deltaSphere = position.add( force ).sub( spherePositionUniform );
|
||
|
const dist = deltaSphere.length();
|
||
|
const sphereForce = float( sphereRadius ).sub( dist ).max( 0 ).mul( deltaSphere ).div( dist ).mul( sphereUniform );
|
||
|
force.addAssign( sphereForce );
|
||
|
|
||
|
vertexForceBuffer.element( instanceIndex ).assign( force );
|
||
|
vertexPositionBuffer.element( instanceIndex ).addAssign( force );
|
||
|
|
||
|
} )().compute( vertexCount );
|
||
|
|
||
|
}
|
||
|
|
||
|
function setupWireframe() {
|
||
|
|
||
|
// adds helpers to visualize the verlet system
|
||
|
|
||
|
// verlet vertex visualizer
|
||
|
const vertexWireframeMaterial = new THREE.SpriteNodeMaterial();
|
||
|
vertexWireframeMaterial.positionNode = vertexPositionBuffer.element( instanceIndex );
|
||
|
vertexWireframeObject = new THREE.Mesh( new THREE.PlaneGeometry( 0.01, 0.01 ), vertexWireframeMaterial );
|
||
|
vertexWireframeObject.frustumCulled = false;
|
||
|
vertexWireframeObject.count = verletVertices.length;
|
||
|
scene.add( vertexWireframeObject );
|
||
|
|
||
|
|
||
|
// verlet spring visualizer
|
||
|
const springWireframePositionBuffer = new THREE.BufferAttribute( new Float32Array( 6 ), 3, false );
|
||
|
const springWireframeIndexBuffer = new THREE.BufferAttribute( new Uint32Array( [ 0, 1 ] ), 1, false );
|
||
|
const springWireframeMaterial = new THREE.LineBasicNodeMaterial();
|
||
|
springWireframeMaterial.positionNode = Fn( () => {
|
||
|
|
||
|
const vertexIds = springVertexIdBuffer.element( instanceIndex );
|
||
|
const vertexId = select( attribute( 'vertexIndex' ).equal( 0 ), vertexIds.x, vertexIds.y );
|
||
|
return vertexPositionBuffer.element( vertexId );
|
||
|
|
||
|
} )();
|
||
|
|
||
|
const springWireframeGeometry = new THREE.InstancedBufferGeometry();
|
||
|
springWireframeGeometry.setAttribute( 'position', springWireframePositionBuffer );
|
||
|
springWireframeGeometry.setAttribute( 'vertexIndex', springWireframeIndexBuffer );
|
||
|
springWireframeGeometry.instanceCount = verletSprings.length;
|
||
|
|
||
|
springWireframeObject = new THREE.Line( springWireframeGeometry, springWireframeMaterial );
|
||
|
springWireframeObject.frustumCulled = false;
|
||
|
springWireframeObject.count = verletSprings.length;
|
||
|
scene.add( springWireframeObject );
|
||
|
|
||
|
}
|
||
|
|
||
|
function setupSphere() {
|
||
|
|
||
|
const geometry = new THREE.IcosahedronGeometry( sphereRadius * 0.95, 4 );
|
||
|
const material = new THREE.MeshStandardNodeMaterial();
|
||
|
sphere = new THREE.Mesh( geometry, material );
|
||
|
scene.add( sphere );
|
||
|
|
||
|
}
|
||
|
|
||
|
function setupClothMesh() {
|
||
|
|
||
|
// This function generates a three Geometry and Mesh to render the cloth based on the verlet systems position data.
|
||
|
// Therefore it creates a plane mesh, in which each vertex will be centered in the center of 4 verlet vertices.
|
||
|
|
||
|
const vertexCount = clothNumSegmentsX * clothNumSegmentsY;
|
||
|
const geometry = new THREE.BufferGeometry();
|
||
|
|
||
|
// verletVertexIdArray will hold the 4 verlet vertex ids that contribute to each geometry vertex's position
|
||
|
const verletVertexIdArray = new Uint32Array( vertexCount * 4 );
|
||
|
const indices = [];
|
||
|
|
||
|
const getIndex = ( x, y ) => {
|
||
|
|
||
|
return y * clothNumSegmentsX + x;
|
||
|
|
||
|
};
|
||
|
|
||
|
for ( let x = 0; x < clothNumSegmentsX; x ++ ) {
|
||
|
|
||
|
for ( let y = 0; y < clothNumSegmentsX; y ++ ) {
|
||
|
|
||
|
const index = getIndex( x, y );
|
||
|
verletVertexIdArray[ index * 4 ] = verletVertexColumns[ x ][ y ].id;
|
||
|
verletVertexIdArray[ index * 4 + 1 ] = verletVertexColumns[ x + 1 ][ y ].id;
|
||
|
verletVertexIdArray[ index * 4 + 2 ] = verletVertexColumns[ x ][ y + 1 ].id;
|
||
|
verletVertexIdArray[ index * 4 + 3 ] = verletVertexColumns[ x + 1 ][ y + 1 ].id;
|
||
|
|
||
|
if ( x > 0 && y > 0 ) {
|
||
|
|
||
|
indices.push( getIndex( x, y ), getIndex( x - 1, y ), getIndex( x - 1, y - 1 ) );
|
||
|
indices.push( getIndex( x, y ), getIndex( x - 1, y - 1 ), getIndex( x, y - 1 ) );
|
||
|
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
const verletVertexIdBuffer = new THREE.BufferAttribute( verletVertexIdArray, 4, false );
|
||
|
const positionBuffer = new THREE.BufferAttribute( new Float32Array( vertexCount * 3 ), 3, false );
|
||
|
geometry.setAttribute( 'position', positionBuffer );
|
||
|
geometry.setAttribute( 'vertexIds', verletVertexIdBuffer );
|
||
|
geometry.setIndex( indices );
|
||
|
|
||
|
clothMaterial = new THREE.MeshPhysicalNodeMaterial( {
|
||
|
color: new THREE.Color().setHex( API.color ),
|
||
|
side: THREE.DoubleSide,
|
||
|
transparent: true,
|
||
|
opacity: 0.85,
|
||
|
sheen: 1.0,
|
||
|
sheenRoughness: 0.5,
|
||
|
sheenColor: new THREE.Color().setHex( API.sheenColor ),
|
||
|
} );
|
||
|
|
||
|
clothMaterial.positionNode = Fn( ( { material } ) => {
|
||
|
|
||
|
// gather the position of the 4 verlet vertices and calculate the center position and normal from that
|
||
|
const vertexIds = attribute( 'vertexIds' );
|
||
|
const v0 = vertexPositionBuffer.element( vertexIds.x ).toVar();
|
||
|
const v1 = vertexPositionBuffer.element( vertexIds.y ).toVar();
|
||
|
const v2 = vertexPositionBuffer.element( vertexIds.z ).toVar();
|
||
|
const v3 = vertexPositionBuffer.element( vertexIds.w ).toVar();
|
||
|
|
||
|
const top = v0.add( v1 );
|
||
|
const right = v1.add( v3 );
|
||
|
const bottom = v2.add( v3 );
|
||
|
const left = v0.add( v2 );
|
||
|
|
||
|
const tangent = right.sub( left ).normalize();
|
||
|
const bitangent = bottom.sub( top ).normalize();
|
||
|
|
||
|
const normal = cross( tangent, bitangent );
|
||
|
|
||
|
// send the normalView from the vertex shader to the fragment shader
|
||
|
material.normalNode = transformNormalToView( normal ).toVarying();
|
||
|
|
||
|
return v0.add( v1 ).add( v2 ).add( v3 ).mul( 0.25 );
|
||
|
|
||
|
} )();
|
||
|
|
||
|
clothMesh = new THREE.Mesh( geometry, clothMaterial );
|
||
|
clothMesh.frustumCulled = false;
|
||
|
scene.add( clothMesh );
|
||
|
|
||
|
}
|
||
|
|
||
|
function setupCloth() {
|
||
|
|
||
|
setupVerletGeometry();
|
||
|
setupVerletVertexBuffers();
|
||
|
setupVerletSpringBuffers();
|
||
|
setupUniforms();
|
||
|
setupComputeShaders();
|
||
|
setupWireframe();
|
||
|
setupSphere();
|
||
|
setupClothMesh();
|
||
|
|
||
|
}
|
||
|
|
||
|
function onWindowResize() {
|
||
|
|
||
|
camera.aspect = window.innerWidth / window.innerHeight;
|
||
|
|
||
|
camera.updateProjectionMatrix();
|
||
|
|
||
|
renderer.setSize( window.innerWidth, window.innerHeight );
|
||
|
|
||
|
}
|
||
|
|
||
|
function updateSphere() {
|
||
|
|
||
|
sphere.position.set( Math.sin( timestamp * 2.1 ) * 0.1, 0, Math.sin( timestamp * 0.8 ) );
|
||
|
spherePositionUniform.value.copy( sphere.position );
|
||
|
|
||
|
}
|
||
|
|
||
|
async function render() {
|
||
|
|
||
|
sphere.visible = params.sphere;
|
||
|
sphereUniform.value = params.sphere ? 1 : 0;
|
||
|
windUniform.value = params.wind;
|
||
|
clothMesh.visible = ! params.wireframe;
|
||
|
vertexWireframeObject.visible = params.wireframe;
|
||
|
springWireframeObject.visible = params.wireframe;
|
||
|
|
||
|
const deltaTime = Math.min( clock.getDelta(), 1 / 60 ); // don't advance the time too far, for example when the window is out of focus
|
||
|
const stepsPerSecond = 360; // ensure the same amount of simulation steps per second on all systems, independent of refresh rate
|
||
|
const timePerStep = 1 / stepsPerSecond;
|
||
|
|
||
|
timeSinceLastStep += deltaTime;
|
||
|
|
||
|
while ( timeSinceLastStep >= timePerStep ) {
|
||
|
|
||
|
// run a verlet system simulation step
|
||
|
timestamp += timePerStep;
|
||
|
timeSinceLastStep -= timePerStep;
|
||
|
updateSphere();
|
||
|
await renderer.computeAsync( computeSpringForces );
|
||
|
await renderer.computeAsync( computeVertexForces );
|
||
|
|
||
|
}
|
||
|
|
||
|
await renderer.renderAsync( scene, camera );
|
||
|
|
||
|
}
|
||
|
|
||
|
</script>
|
||
|
</body>
|
||
|
</html>
|