You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
106 lines
3.8 KiB
Python
106 lines
3.8 KiB
Python
1 year ago
|
import matplotlib.pyplot as plt
|
||
|
from scipy.stats import gaussian_kde
|
||
|
from scipy.spatial.distance import cdist
|
||
|
import copy
|
||
|
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
|
||
|
from matplotlib.colors import Normalize
|
||
|
import numpy as np
|
||
|
from skimage import measure
|
||
|
import matplotlib.cm as cm
|
||
|
|
||
|
class create():
|
||
|
def __init__(self):
|
||
|
"""
|
||
|
data is the x and y coordinate of data.pos
|
||
|
contours is the edge points
|
||
|
f is the kernel density value
|
||
|
levels is the levels for contours
|
||
|
x_range is the range of x label
|
||
|
y_range is the range of y label
|
||
|
|
||
|
"""
|
||
|
self.data = []
|
||
|
self.vertices = []
|
||
|
self.faces = []
|
||
|
self.levels = []
|
||
|
self.x_range = []
|
||
|
self.y_range = []
|
||
|
|
||
|
def data_pre(self, data_name):
|
||
|
with open(data_name, 'r') as f:
|
||
|
lines = f.readlines()
|
||
|
L_en=len(lines)
|
||
|
lines= lines[1:L_en]
|
||
|
data = []
|
||
|
for line in lines:
|
||
|
x, y,z,t = line.strip().split("\t")
|
||
|
data.append(list(map(float, [x,y,z])))
|
||
|
data = np.array(data)
|
||
|
self.data = data
|
||
|
self.x_range = [min(data[:, 0]), max(data[:,0])]
|
||
|
self.y_range = [min(data[:, 1]), max(data[:,1])]
|
||
|
self.z_range = [min(data[:, 2]), max(data[:,2])]
|
||
|
|
||
|
def contours_pre(self, level):
|
||
|
|
||
|
x = self.data[:, 0]
|
||
|
y = self.data[:, 1]
|
||
|
z = self.data[:, 2]
|
||
|
# 使用scipy库中的gaussian_kde函数计算密度估计
|
||
|
k = gaussian_kde(self.data.T)
|
||
|
xi, yi, zi = np.mgrid[x.min()*1.5:x.max()*1.5:30j, y.min()*1.5:y.max()*1.5:30j, z.min()-50:z.max()+50:50j]
|
||
|
density = k(np.vstack([xi.flatten(), yi.flatten(), zi.flatten()]))
|
||
|
self.density =density
|
||
|
level = density.max()*level/100
|
||
|
|
||
|
# 使用 marching_cubes 生成等值面顶点和面
|
||
|
verts, faces, _, _ = measure.marching_cubes(density.reshape(xi.shape), level=level)
|
||
|
a_0 = (x.max() - x.min()) / (verts[:, 0].max() - verts[:, 0].min())
|
||
|
vertices_0 = (verts[:, 0] - verts[:, 0].min()) * a_0 + x.min()-5
|
||
|
a_1 = (y.max() - y.min()+10) / (verts[:, 1].max() - verts[:, 1].min())
|
||
|
vertices_1 = (verts[:, 1] - verts[:, 1].min()) * a_1 + y.min()-5
|
||
|
a_2 = (z.max() - z.min()+10) / (verts[:, 2].max() - verts[:, 2].min())
|
||
|
vertices_2 = (verts[:, 2] - verts[:, 2].min()) * a_2 + z.min()-5
|
||
|
vertices = np.array([vertices_0, vertices_1, vertices_2]).T
|
||
|
self.vertices = vertices
|
||
|
self.faces = faces
|
||
|
|
||
|
|
||
|
class well_to_edge():
|
||
|
def __init__(self):
|
||
|
"""
|
||
|
name is used to store the well names
|
||
|
type is the types of the wells
|
||
|
position is the coordinates of wells
|
||
|
min_distance is the minimum distances between wells and edge
|
||
|
welltoedge_points is the points responding to the min_distance
|
||
|
angle is the angles between the shortest distance direction vector from the well to the edge and the positive direction of the y-axis during clockwise rotation;
|
||
|
wells_num: the number of wells
|
||
|
"""
|
||
|
self.name = []
|
||
|
self.type = []
|
||
|
self.position = []
|
||
|
self.min_distance = []
|
||
|
self.welltoedge_points = []
|
||
|
self.angle = []
|
||
|
self.wells_num = 0
|
||
|
|
||
|
def wells_name_and_position(self, wells_name):
|
||
|
# 读取井位信息
|
||
|
with open(wells_name, 'r') as f_j:
|
||
|
j_ing = f_j.readlines()
|
||
|
points = []
|
||
|
typee = []
|
||
|
namee = []
|
||
|
for line in j_ing:
|
||
|
if ('0' or '1') in line:
|
||
|
name, x, y, z, type = line.strip().split("\t")
|
||
|
if name != 'name':
|
||
|
points.append(list(map(float, [x, y, z])))
|
||
|
typee.append(list(map(int, [type])))
|
||
|
namee.append(name.split('\n'))
|
||
|
self.position = points
|
||
|
self.name = namee
|
||
|
self.type = typee
|
||
|
self.wells_num = len(points)
|