You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

135 lines
4.7 KiB
Python

2 years ago
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
from scipy.stats import gaussian_kde
from scipy.spatial.distance import cdist
import copy
class create():
def __init__(self):
"""
data is the x and y coordinate of data.pos
contours is the edge points
f is the kernel density value
levels is the levels for contours
x_range is the range of x label
y_range is the range of y label
"""
self.data = []
self.contours = []
self.f = []
self.levels = []
self.x_range = []
self.y_range = []
def data_pre(self, data_name):
with open(data_name, 'r') as f:
lines = f.readlines()
L_en=len(lines)
lines= lines[1:L_en]
data = []
for line in lines:
x, y,z,t = line.strip().split("\t")
data.append(list(map(float, [x,y])))
data = np.array(data)
self.data = data
self.x_range = [min(data[:, 0]), max(data[:,0])]
self.y_range = [min(data[:, 1]), max(data[:,1])]
2 years ago
def singlefile(self):
pass
2 years ago
def contours_pre(self, level_nums, gWeight):
x = self.data[:, 0]
y = self.data[:, 1]
# 使用scipy库中的gaussian_kde函数计算密度估计
kde = gaussian_kde(self.data.T)
# 生成网格点坐标
xx, yy = np.mgrid[x.min():x.max():200j, y.min():y.max():200j]
positions = np.vstack([xx.ravel(), yy.ravel()])
# 计算网格点上的密度估计值
f = np.reshape(kde(positions).T, xx.shape)
# 绘制等高线图
levels = []
for i in range(level_nums):
levels.append(f.max() - (level_nums - i - 1) * (f.max() - f.min()) / gWeight)
self.levels = levels
contours = plt.contour(xx, yy, f, levels=[levels[0], levels[level_nums - 1]], cmap='coolwarm', alpha=0)
plt.close()
self_contours = []
for i in range(len(contours.allsegs[0])):
self_contours += contours.allsegs[0][i].tolist()
for i in range(len(self_contours)):
if self_contours[i] not in self.contours:
self.contours += [self_contours[i]]
self.f = f
class well_to_edge():
def __init__(self):
"""
name is used to store the well names
type is the types of the wells
position is the coordinates of wells
min_distance is the minimum distances between wells and edge
welltoedge_points is the points responding to the min_distance
angle is the angles between the shortest distance direction vector from the well to the edge and the positive direction of the y-axis during clockwise rotation;
wells_num: the number of wells
"""
self.name = []
self.type = []
self.position = []
self.min_distance = []
self.welltoedge_points = []
self.angle = []
self.wells_num = 0
def wells_name_and_position(self, wells_name):
# 读取井位信息
with open(wells_name, 'r') as f_j:
j_ing = f_j.readlines()
points = []
typee = []
namee = []
for line in j_ing:
x, y, type, name = line.strip().split("\t")
points.append(list(map(float, [x, y])))
typee.append(list(map(int, [type])))
namee.append(name.split('\n'))
self.position = points
self.name = namee
self.type = typee
self.wells_num = len(points)
def welltoedge_distance(self, contour_points):
min_distance = []
contours_p=[]
angles=[]
wells_num = self.wells_num
points = self.position
# 定义待计算距离的点
for i in range(wells_num):
point = np.array([points[i][0], points[i][1]])
# 计算点到等高线上所有点之间的距离
distances = cdist(point.reshape(1, -1), contour_points)
# 取距离的最小值
min_distance.append(distances.min())
# 记录最短距离对应的点
for ii in range(distances.size):
if distances[0][ii] == min_distance[-1]:
contours_p.append(contour_points[ii])
# 计算角度y轴为正北方向
direct = contours_p[-1] - point
if direct[0] < 0:
angles.append(360-np.arccos(np.dot(direct, np.array(([0, 1]))) / np.linalg.norm(
direct)) / np.pi * 180)
else:
angles.append(np.arccos(np.dot(direct, np.array(([0, 1]))) / np.linalg.norm(
direct)) / np.pi * 180)
self.min_distance = min_distance
self.welltoedge_points = contours_p
self.angle = angles